Flood Susceptibility Mapping Using Image-Based 2D-CNN Deep Learning: Overview and Case Study Application Using Multiparametric Spatial Data in Data-Scarce Urban Environments
نویسندگان
چکیده
This study presents results for urban flood susceptibility mapping (FSM) using image-based 2D-convolutional neural networks (2D-CNN). The model input multiparametric spatial data comprised of land-useland-cover (LULC), digital elevation (DEM), and the topographic hydrologic conditioning derivatives, precipitation, soil types. implemented dropout regularization 2D-CNN with ReLU activation function, categorical cross-entropy loss AdaGrad optimizer produced case area FSM overall accuracy (OA) 82.5%. outperformed multilayer perceptron (MLP) network by 18.4% in terms corresponding lower MAE higher F1-measures 10.9% 0.989, as compared to 25.6% 0.877, respectively, MLP-ANN results. that map efficiency were evaluated under ROC curve (AUC) respective success prediction rates 0.827 0.809. Using 2D-CNN, 27% 247.7 km2 studied was mapped a high risk flooding, overestimating degree 4.7%. Based on gain ratio index analysis factors (FCFs), most significant FCFs LULC (18.5%), precipitation (14.9%), proximity river (13.3%), (12.4%). Soil types contributed 8.6%, slope 9.1%, DEM-derived hodological indicators 23.2%. demonstrate areas scarce hydrological monitoring networks, use can produce high-quality maps management environments.
منابع مشابه
pattern recognition in maintenance data using methodologies data minitng (cade study isfahan regional power electric company)
فعالیت های نگهداری و تعمیرات اطلاعاتی را تولید می کند که می تواند در تعیین زمان های بیکاری و ارایه یک برنامه زمان بندی شده یا تعیین هشدارهای خرابی به پرسنل نگهداری و تعمیرات کمک کند. وقتی که مقدار داده های تولید شده زیاد باشند، فهم بین متغیرها بسیار مشکل می شوند. این پایان نامه به کاربردی از داده کاوی برای کاوش پایگاه های داده چندبعدی در حوزه نگهداری و تعمیرات، برای پیدا کردن خرابی هایی که موجب...
15 صفحه اولmetrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)
هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...
Identification Psychological Disorders Based on Data in Virtual Environments Using Machine Learning
Introduction: Psychological disorders is one of the most problematic and important issue in today's society. Early prognosis of these disorders matters because receiving professional help at the appropriate time could improve the quality of life of these patients. Recently, researches use social media as a form of new tools in identifying psychological disorder. It seems that through the use of...
متن کاملA model-based approach for mapping rangelands covers using Landsat TM image data
Empirical models are important tools for relating field-measured biophysical variables to remotely sensed data. Regression analysis has been a popular empirical method of linking these two types of data to estimate variables such as biomass, percent vegetation canopy cover, and bare soil. This study was conducted in a semi-arid rangeland ecosystem of Qazvin province, Iran. This paper presents t...
متن کاملFlood Hazard Mapping using Aster Image data with GIS
Flood is one of the most devastating natural hazards which lead to the loss of lives, properties and resources. It has therefore become important to create easily read, rapidly accessible flood hazard map, which will prioritize the mitigation effects. This study addresses the need for an efficient and cost-effective methodology for preparing flood hazard maps in Ghana, particularly those region...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Intelligent Systems
سال: 2023
ISSN: ['1098-111X', '0884-8173']
DOI: https://doi.org/10.1155/2023/5672401